Received 15 April 2005 Accepted 20 April 2005

Online 27 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Richard M. Hartshorn,* Ramin Zibaseresht and Ward T. Robinson

Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Correspondence e-mail: richard.hartshorn@canterbury.ac.nz

Key indicators

Single-crystal X-ray study T = 85 K Mean σ (C–C) = 0.008 Å R factor = 0.058 wR factor = 0.137 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[2,4-bis(2-pyridyl- κN)-6-(4-pyridyl)-1,3,5-triazine- κN^3]ruthenium(II) bis(hexafluorophosphate)

The coordination of Ru in the title compound, [Ru- $(C_{18}H_{12}N_6)_2$](PF₆)₂, is octahedral. The coordination sphere is formed by six N atoms from the tridentate sites of two ligands that are meridionally oriented around the Ru^{II} ion. The locations of the donor atoms deviate substantially from an ideal octahedron. The Ru–N distances are in the range 1.983 (4)–2.111 (4) Å. The Ru atom occupies a special position with twofold rotational symmetry. One of the P atoms occupies a special position with twofold rotational symmetry and the other P atom is located on a special position at a centre of symmetry.

Comment

Our aim involves the synthesis and characterization of bridging ligands containing two non-equivalent binding sites. Our interests are particularly focused on preparation of such ligands capable of binding an Ru^{II} ion at one site and a Co^{III} ion at the other site. As part of our study, the ligand 2,4-bis(2-pyridyl)-6-(4-pyridyl)-1,3,5-triazine was synthesized using the method of Polson *et al.* (2002). This terpyridyl-like ligand, which contains a remote fourth N-donor atom, was a candidate for our study. The title ruthenium complex, (I), in which two ligands are coordinated to an Ru^{II} ion through their tridentate sites was prepared according to the reported methods (Polson *et al.*, 2002, 2004).

Complex (I) (Fig. 1) crystallizes in the orthorhombic space group *Pcca* with four well separated molecules in the unit cell. The asymmetric unit comprises one half-cation and two halfanions. The Ru atom occupies a special position with twofold rotational symmetry. One of the P atoms occupies a special position with twofold rotational symmetry and the other P atom is located on a special position at a centre of symmetry. The ruthenium ion is six-coordinate, but the geometry is significantly distorted from that of an ideal octahedron as a result of the constraints enforced by the ligand structure. This is commonly observed for terpyridyl-like ligands (Thummel &

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A perspective view of the Ru^{II} complex (I), showing the atom-labelling scheme with 50% probability displacement ellipsoids. Unlabelled atoms in the cation and PF₆⁻ anions P₁ and P₂ are related by the symmetry codes $(\frac{1}{2} - x, -y, z)$, $(\frac{1}{2} - x, 1 - y, z)$ and (1 - x, 2 - y, -z), respectively. H atoms are drawn as small spheres of arbitrary radii.

Jahng, 1986; Constable et al., 1990, 1992, 2001; Cathey et al., 1990; Bushell et al., 1998; Craig et al., 1998; Sasaki et al., 1998; Cardenas et al., 1999: Chamchoumis & Potvin, 1999: Fallahpour et al., 1999; Lashgari et al., 1999; Pyo et al., 1999; Ziegler et al., 1999; Alcock et al., 2000; Encinas et al., 2002; Fang et al., 2002; Laine et al., 2002). Each of the tridentate ligands occupies three meridionally located coordination sites. The Ru-N bond lengths show the expected pattern for complexes related to [Ru(terpy)₂](PF₆)₂ (Pvo *et al.*, 1999; Lashgari *et al.*, 1999), with short metal-ligand bonds to the central ring [1.983 (4) Å] and longer bonds to the side pyridine rings [mean 2.108 (4) Å]. The non-coordinated pyridine rings are not coplanar with the central triazine ring and form interannular angles of $16.8 (3)^{\circ}$. Similar observations have been made for the Ni^II and Ru^II complexes based on the 4'-phenyl-substituted terpyridine system (Constable et al., 1990; Chamchoumis et al., 1999). As shown in Fig. 2, there are $\pi - \pi$ stacking interactions (face-face) between the terminal pyridyl rings of adjacent complexes [centroid–centroid distance = 3.72(8)Å]. The complex cations are arranged like the steps of a spiral staircase along the b axis of the unit cell, with the stack of pyridyl rings forming the pole of the staircase. There appears to be no significant hydrogen bonding in the crystal structure.

Experimental

The 2,4-bis(2-pyridyl)-6-(4-pyridyl)-1,3,5-triazine ligand and its ruthenium complex, (I), were synthesized according to the methods of Polson *et al.* (2002, 2004). Red block-shaped crystals were obtained by slow evaporation of a CH_3CN-H_2O solution of the complex (yield 16%).

Crystal data

$[Ru(C_{18}H_{12}N_6)_2](PF_6)_2$	Mo $K\alpha$ radiation		
$M_r = 1015.68$	Cell parameters from 8243		
Orthorhombic, Pcca	reflections		
a = 21.474 (11) Å	$\theta = 4.9-52.5^{\circ}$		
b = 11.008 (6) Å	$\mu = 0.61 \text{ mm}^{-1}$		
c = 16.044 (8) Å	T = 85 (2) K		
$V = 3793 (3) \text{ Å}^3$	Block, red		
Z = 4	$0.61 \times 0.29 \times 0.08 \text{ mm}$		
$D_x = 1.779 \text{ Mg m}^{-3}$			

Figure 2

A packing diagram, showing the π - π stacking interactions between the complexes parallel to the *ac* plane.

Data collection

Bruker SMART CCD	3864 independent reflections
diffractometer	2935 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1999)	$h = -26 \rightarrow 26$
$T_{\min} = 0.709, \ T_{\max} = 0.953$	$k = -13 \rightarrow 11$
21 050 measured reflections	$l = -18 \rightarrow 19$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.058$	+ 19.9599 <i>P</i>]
$wR(F^2) = 0.137$	where $P = (\hat{F_o}^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
3864 reflections	$\Delta \rho_{\rm max} = 1.54 \text{ e } \text{\AA}^{-3}$
287 parameters	$\Delta \rho_{\rm min} = -1.09 \ {\rm e} \ {\rm \AA}^{-3}$

H-atom parameters constrained

able I					
elected	geometric	parameters	(Å,	°)	١.

Ru–N1	1.983 (4)	Ru-N5	2.111 (4)
Ru–N4	2.104 (4)		
N1 ⁱ -Ru-N1	178.9 (3)	N1-Ru-N5 ⁱ	77.41 (18)
N1 ⁱ -Ru-N4 ⁱ	77.00 (17)	N4 ⁱ -Ru-N5 ⁱ	92.97 (17)
N1-Ru-N4 ⁱ	102.22 (16)	N4-Ru-N5 ⁱ	154.38 (16)
N1-Ru-N4	77.00 (17)	N1 ⁱ -Ru-N5	77.41 (18)
N4 ⁱ -Ru-N4	93.6 (2)	N5 ⁱ -Ru-N5	91.7 (2)
N1 ⁱ -Ru-N5 ⁱ	103.38 (17)		
N3-C2-C14-C18	16.9 (8)	N2-C2-C14-C15	16.2 (8)

Symmetry code: (i) $\frac{1}{2} - x, -y, z$.

All H atoms were placed in calculated positions [C-H = 0.93 Å]and $U_{\rm iso} = 1.2U_{\rm eq}(C)]$ and were included in the refinement in the riding-model approximation. The highest peak is very close to Ru (0.89 Å) and the deepest hole is near N4 (1.62 Å), neither in chemically sensible locations for atoms.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

RZ would like to acknowledge receipt of a University of Canterbury doctoral scholarship.

References

- Alcock, N. W., Barker, P. R., Haider, J. M., Hannon, M. J., Painting, C. L., Pikramenou, Z., Plummer, E. A., Rissanen, K. & Saarenketo, P. (2000). J. Chem. Soc. Dalton Trans. pp. 1447–1462.
- Bruker (1999). SADABS, SAINT-Plus (Version 6.22) and SMART (Version 5.045). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bushell, K. L., Couchman, S. M., Jeffery, J. C., Rees, L. H. & Ward, M. D. (1998). J. Chem. Soc. Dalton Trans. pp. 3397–3404.
- Cardenas, D. J., Collin, J.-P., Gavina, P., Sauvage, J.-P., De Cian, A., Fischer, J., Armaroli, N., Flamigni, L., Vicinelli, V. & Balzani, V. (1999). J. Am. Chem. Soc. 121, 5481–5488.
- Cathey, C. J., Constable, E. C., Hannon, M. J., Tocher, D. A. & Ward, M. D. (1990). J. Chem. Soc. Chem. Commun. pp. 621–622.
- Chamchoumis, C. M. & Potvin, P. G. (1999). J. Chem. Soc. Dalton Trans. pp. 1373–1374.
- Constable, E. C., Housecroft, C. E., Johnston, L. A., Armspach, D., Neuburger, M. & Zehnder, M. (2001). Polyhedron, 20, 483–492.
- Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). *Inorg. Chim.* Acta, **178**, 47–54.
- Constable, E. C., Thompson, A. M. W. C., Tocher, D. A. & Daniels, M. A. M. (1992). New J. Chem. 16, 855–67.
- Craig, D. C., Scudder, M. L., McHale, W.-A. & Goodwin, H. A. (1998). Aust. J. Chem. 51, 1131–1139.

- Encinas, S., Flamigni, L., Barigelletti, F., Constable, E. C., Housecroft, C. E., Schofield, E. R., Figgemeier, E., Fenske, D., Neuburger, M., Vos, J. G. & Zehnder, M. (2002). *Chem. Eur. J.* 8, 137–150.
- Fallahpour, R.-A., Neuburger, M. & Zehnder, M. (1999). Polyhedron, 18, 2445–2454.
- Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912–7913.
- Laine, P., Bedioui, F., Ochsenbein, P., Marvaud, V., Bonin, M. & Amouyal, E. A. (2002). J. Am. Chem. Soc. 124, 1364–1377.
- Lashgari, K., Norrestam, R. & Akermark, B. (1999). Acta Cryst. C55, IUC9900108.
- Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). *Chem. Eur. J.* 10, 3640–3648.
- Polson, M. I. J., Taylor, N. J. & Hanan, G. S. (2002). Chem. Commun. pp. 1356– 1357.
- Pyo, S., Perez-Cordero, E., Bott, S. G. & Echegoyen, L. (1999). *Inorg. Chem.* 38, 3337–3343.
- Sasaki, I., Daran, J. C., Ait-Haddou, H. & Balavoine, G. G. A. (1998). Inorg. Chem. Commun. 1, 354–357.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Thummel, R. P. & Jahng, Y. (1986). Inorg. Chem. 25, 2527-2534.
- Ziegler, M., Monney, V., Stoeckli-Evans, H., Von Zelewsky, A., Sasaki, I., Dupic, G., Daran, J.-C. & Balavoine, G. G. A. (1999). J. Chem. Soc. Dalton Trans. pp. 667–676.